Symmetry Breaking for a Class of Semilinear Elliptic Problems
نویسندگان
چکیده
We study positive solutions of the Dirichlet problem for —Ají = up — A, p > 1, A > 0, on the unit ball 0. We show that there exists a positive solution (uo, Ao) of this problem which satisfies in addition duo/dn = 0 on âfî. We prove also that at (uo,Ao), the symmetry breaks, i.e. asymmetric solutions bifurcate from the positive radial solutions.
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملGlobal bifurcations of concave semipositone problems
We study semilinear elliptic equations on general bounded domains with concave semipositone nonlinearities. We prove the existence of the maximal solutions, and describe the global bifurcation diagrams. When a parameter is small, we obtain the exact global bifurcation diagram. We also discuss the related symmetry breaking bifurcation when the domains have certain symmetries.
متن کاملSymmetry-Breaking for Positive Solutions of Semilinear Elliptic Equations
In a recent interesting paper, GIDAS, NI, and NIRENBERG [2] proved that positive solutions of the Dirichlet problem for second-order semi-linear elliptic equations on balls must themselves be spherically symmetric functions. Here we consider the bifurcation problem for such solutions. Specifically, we investigate the ways in which the symmetric solution can bifurcate into a nonsymmetric solutio...
متن کاملSymmetry and Automated Branch Following for a Semilinear Elliptic PDE on a Fractal Region
We apply the Gradient-Newton-Galerkin-Algorithm (GNGA) of Neuberger & Swift to find solutions to a semilinear elliptic Dirichlet problem on the region whose boundary is the Koch snowflake. In a recent paper, we described an accurate and efficient method for generating a basis of eigenfunctions of the Laplacian on this region. In that work, we used the symmetry of the snowflake region to analyze...
متن کامل